Creo que hay recordar las dos opciones posibles a día de hoy. La primera es que se haya descubierto el bosón de Higgs H y por tanto algún día se descubrirá que existe otro bosón de Higgs h con una masa más pequeña (bastante menor de 125 GeV). La segunda opción es que se haya descubierto el bosón de Higgs h y por tanto algún día se descubrirá que existe otro bosón de Higgs con una masa mucho más grande (bastante mayor de 125 GeV). La opinión general de los expertos es que, tras 20 años buscando al Higgs por debajo de 115 GeV en LEP2 sin encontrarlo, la opción correcta debe ser la segunda. Es decir, si la SUSY se observa a baja energía en la escala alcanzable por el LHC del CERN, hay que seguir buscando un segundo bosón de Higgs con una masa mayor de unos 560 GeV (por debajo ya ha sido excluido que exista por los datos publicados el pasado 4 de julio). Por supuesto, si la SUSY no se da a baja energía (o a una escala alcanzable en el LHC), es imposible saber si el bosón descubierto el miércoles pasado es el Higgs del modelo estándar o el Higgs h supersimétrico, pero como no importa la diferencia, porque no la hay, la navaja de Ockham nos exige hablar de Higgs del modelo estándar (hasta que no se descubra alguna otra partícula de Higgs o supersimétrica).
¿Cómo se pueden producir en una colisión del LHC los bosones h, H y A? Exactamente de las mismas formas que se puede producir el Higgs SM, es decir, el 90% se producirá por fusión de gluones vía tres quarks top virtuales (los bosones de Higgs cargados se producirán de otra forma, pero no importa). ¿Cómo pueden observarse? Igual que el Higgs SM para los bosones h y H, pero en ciertos canales solo para el A.
¿Se están buscando los bosones de Higgs SUSY en el LHC? Sí, por supuesto, pero aún no han sido encontrados. Ver, por ejemplo, para los bosones MSSM en CMS las transparencias de la charla de Christian Veelken (CMS), “Search for Higgs Particles in MSSM SUSY,” ICHEP 2012, 6th July, y para otros modelos NMSSM la de Jim Olsen (CMS), “Beyond MSSM Higgs @ CMS,” ICHEP 2012, 6th July.
¿Pero de verdad no pasa nada si no se descubre la SUSY en el LHC? A todos los físicos nos gustaría que se descubriera, sobre todo porque hay muchos físicos trabajando en ella, pero la verdad es que no pasaría nada. Como nada pasó cuando el Tevatrón a principios de los 1990 no la descubrió. La seguimos buscando con el mismo ahínco que entonces y si el LHC no la encuentra en los próximos 20 años, la seguiremos buscando con el siguiente colisionador. Así de sencillo.
¿Puede resolver la SUSY todos los problemas que resuelve incluso si el LHC no la encuentra? Todos no, pero yo diría que casi todos y los que no resuelve, pues se siente, no los resuelve y punto. La SUSY no es la solución a todos los problemas del Modelo Estándar y si alguno de los problemas que podría resolver no lo resuelve pues no pasa nada.
¿Pero no dicen que la SUSY es “natural” y que el SM no lo es? Sí, lo dicen, pero seguirá siendo igual de natural incluso si ninguna superpartícula es observada en el LHC. Ver, por ejemplo, Xerxes Tata (Univ. Hawaii), “Natural Supersymmetry,” ICHEP 2012, 6th July. El asunto de la naturalidad ha estado muy de moda en la década de los 2000, pero en la década de los 2010 ya ha pasado de moda. ¿La física tiene modas? Como toda actividad humana.
No sé si le he aclarado las ideas a alguien o por el contrario las he liado más, pero bueno, lo siento en este último caso.
No hay comentarios:
Publicar un comentario