jueves, 10 de octubre de 2013

¿Un hiperagujero negro dio origen al universo?

Artículo publicado por Zeeya Merali el 13 de septiembre de 2013 en Nature News
Según proponen los teóricos, el Big Bang fue un espejismo procedente del colapso de estrellas en dimensiones superiores.
Podría ser el momento de apostar en contra del Big Bang. Los cosmólogos han especulado que el universo se formó a partir de los escombros expulsados cuando una estrella de cuatro dimensiones colapsó en un agujero negro — un escenario que ayudaría a explicar por qué el cosmos parece ser tan uniforme en todas las direcciones.
Agujero negro
Agujero negro

El modelo estándar del Big Bang nos dice que el universo estalló a partir de un punto infinitamente denso, o singularidad. Pero nadie sabe qué habría disparado este estallido: las leyes de la física conocida no pueden decirnos qué sucedió en dicho momento.
“Por lo que saben los físicos, podría haber dragones volando desde la singularidad”, dice Niayesh Afshordi, astrofísico del Instituto Perimeter para Física Teórica en Waterloo, Canadá.
También es difícil explicar cómo un violento Big Bang habría dejado tras de sí un universo que tiene una temperatura casi completamente uniforme, debido a que no parece haber suficiente tiempo desde el nacimiento del cosmos para que haya alcanzado un equilibrio térmico.
Para la mayor parte de cosmólogos, la explicación más plausible para tal uniformidad es que, poco después del comienzo del tiempo, alguna forma desconocida de energía hizo que el joven universo se inflase a un ritmo que era superior a la velocidad de la luz. De esta forma, una pequeña parte con una temperatura aproximadamente universo se habría estirado en el vasto cosmos que vemos hoy. Pero Afshordi señala que “el Big Bang fue tan caótico, que no está claro si en algún momento habría habido dicha pequeña zona homogénea a partir de la cual la inflación empezase a trabajar”.
En la brana
En un artículo publicado la semana pasada en el servidor arXiv1, Afshordi y sus colegas vuelven su atención hacia una propuesta2 realizada en 2000 por un equipo que incluía a Gia Dvali, físico actualmente en la Universidad Ludwig Maximilians en Múnich, Alemania. En dicho modelo, nuestro universo tridimensional es una membrana, o brana, que flota a través de un ‘universo superior’ que tiene cuatro dimensiones espaciales.
El equipo de Ashfordi se dio cuenta de que si este universo superior contenía sus propias estrellas de cuatro dimensiones, algunas de ellas colapsarían formando agujeros negros 4D, de la misma forma que las estrellas masivas de nuestro universo lo hacen: estallan como supernovas, expulsan de forma violenta sus capas exteriores, y las capas internas colapsan en un agujero negro.
En nuestro universo, un agujero negro está limitado por una superficie esférica conocida como horizonte de sucesos. Mientras que en un espacio tridimensional común un objeto bidimensional (una superficie) es lo que crea los límites del agujero negro, en el universo superior el horizonte de sucesos de un agujero negro en 4D sería un objeto 3D – una forma conocida como hiperesfera. Cuando el equipo de Afshordi modeló la muerte de una estrella en 4D, hallaron que el material expulsado formaría una brana en 3D alrededor del horizonte de sucesos tridimensional, y se expandiría lentamente.
Los autores proponen que el universo 3D en el que vivimos podría ser sólo una brana – y que detectamos el crecimiento de la brana en forma de expansión cósmica. “Los astrónomos midieron la expansión y extrapolaron que el universo debía haber empezado con un Big Bang — pero esto es sólo un espejismo”, dice Afshordi.
Discrepancia en el modelo
El modelo también explica de forma natural la uniformidad de nuestro universo. Debido a que el universo superior en 4D podría haber existido durante un tiempo infinitamente largo hacia el pasado, habría habido una gran cantidad de oportunidades para que distintas partes del universo 4D alcanzaran un equilibrio, el cual habría heredado nuestro universo 3D.
Esta descripción tiene ciertos problemas, no obstante. A principios de año, el observatorio espacial  Planck, de la Agencia Espacial Europea, publicó datos que cartografiaban las ligeras fluctuaciones de temperatura en el fondo cósmico de microondas — la antigua radiación que porta la marca de los primeros momentos del universo. Los patrones observados encajan con las predicciones realizadas por el modelo estándar del Big Bang e inflación, pero el modelo del agujero negro se desvía de las observaciones de Planck en, aproximadamente, un 4%. Esperando resolver la discrepancia, Afshordi dice que está refinando su modelo.
A pesar de la discrepancia, Dvali elogia la ingeniosa forma en la que el equipo se despoja del modelo del Big Bang. “La singularidad es el problema más fundamental de la cosmología, y ellos han reescrito la historia de forma que nunca lo encontremos”, comenta. Mientras que los resultados de Planck “demuestran que la inflación es correcta”, queda abierta la cuestión de cómo tuvo lugar la inflación, añade Dvali. El estudio podría ayudar a demostrar cómo la inflación estuvo motivada por el movimiento del universo a través de una realidad de dimensiones superiores, concluye.

Artículos de referencia:
Nature doi:10.1038/nature.2013.13743
1.- Pourhasan, R., Afshordi, N. & Mann, R. B. Borrador en http://arxiv.org/abs/1309.1487(2013).
2.- Dvali, G., Gabadadze, G. & Porrati, M. Phys. Lett. B 485, 208–214 (2000).

Autor: Zeeya Merali
Fecha Original: 13 de septiembre de 2013
Enlace Original

Nuevo avance en la fusión aneutrónica protón-boro

Fuente: Francis (th)E mule

Dibujo20131009 protons-boron nuclei - two laser facility - Nature Comms
La fusión aneutrónica produce neutrones de alta energía, pero muchos menos que la fusión convencional. La colisión de protones con núcleos de boro 11 produce sobre todo radiación alfa (núcleos de helio) de alta energía en lugar de neutrones. A veces se afirma que la fusión aneutrónica está “limpia” de radiación ionizante, pero en realidad lo que ocurre es que contener la radiación alfa requiere un blindaje más delgado. No todo son ventajas. La fusión p11B requiere alcanzar una temperatura del plasma mucho más alta que la fusión D-T (deuterio-tritio), lo que impide su uso en reactores de fusión por confinamiento magnético. Por fortuna, la fusión pulsada en reactores por confinamiento inercial no parece imposible, en principio, siempre que el plasma pB esté fuera del equilibrio. Christine Labaune (LULI, Ecole Polytechnique, CNRS, Francia) y sus colegas han publicado en Nature Communications un nuevo avance en esta tecnología basado en el uso de dos láseres diferentes. Un láser de picosegundos calienta el plasma de protones durante unos picosegundos y lo hace colisionar con un plasma de núcleos de boro previamente calentado por un láser de nanosegundos. Han observado la emisión de radiación alfa, sin presencia apreciable de neutrones de alta energía. Un gran éxito, aunque sólo un pequeño paso hacia la fusión aneutrónica como una realidad comercial. Sobre todo porque la escalabilidad del nuevo sistema es muy difícil y el breakeven puede tardar décadas en ser alcanzado. Nos lo cuenta Ron Cowen, “Two-laser boron fusion lights the way to radiation-free energy,” News, Nature, 8 Oct 2013; el artículo técnico es C. Labaune et al., “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nature Communications 4: 2506, 8 Oct 2013 (arXiv:1310.2002 [physics.plasm-ph]).
Dibujo20131009 scheme experimental set-up laser beam configuration - Nature Comms
La fusión p11B por confinamiento inercial mediante pulsos láser requiere pulsos más cortos (en el régimen de los picosegundos) que en la fusión D-T, por ello la configuración experimental es diferente. Christine Labaune y sus colegas del laboratorio LULI llaman Pico2000 a su esquema con dos láseres. El láser de nanopulsos inyecta en los átomos de boro (20% de boro-10 y 80% de boro-11) una energía de 400 J (julios) en pulsos cuadrados de entre 1,5 y 4,0 ns (nanosegundos) con una longitud de onda de 530 nm. La intensidad promedio del láser es de 5 × 1014 W/cm² e incide con una ángulo de 45º en blanco de boro, produciendo un plasma de boro que expulsa los electrones. El láser de picopulsos con longitud de onda de 530 nm inyecta en los protones una energía de 20 J en 1 ps (picosegundo). La intensidad promedio de este láser es de 6 × 1018 W/cm². El ángulo relativo entre ambos haces láser es de 112,5º y el retraso entre sus pulsos se puede ajustar entre 0,25 y 1,2 ns.
Dibujo20131009 time-integrated X ray pinhole image of three plasmas along the direction of propagation of picosecond beam - Nature Comms
Esta figura, parte izquierda, muestra una imagen de los tres plasmas: protones, electrones y núcleos de boro. La parte derecha de la figura presenta una imagen detallada del plasma de núcleos de boro. Como se ve es poco uniforme y uno de los objetivos futuros del laboratorio de LULI será mejorar la homogeneidad del plasma, acercándola a la observada en las simulaciones por ordenador.
Dibujo20131009 total number of tracks magnetic spectrometer function of alpha-particle energy - Nature Comms
Se han realizado múltiples experimentos. Las predicciones teóricas indican que la energía del haz de partículas alfa debe estar en el rango de 0,5 a 8 MeV. La máxima energía alcanzada en los experimentos ha sido de 7,1 MeV (parte derecha de esta figura), siendo el valor típico entre 3,3 y 5,4 MeV. El número de trazas (tracks) de partículas alfa observadas es inferior a 140, es decir, se ha demostrado que unos 140 protones se han fusionado con unos 140 núcleos de boro. No es un número para tirar cohetes, pero indica una tasa máxima de reacción de 9 × 106 sucesos por estereorradián (sr), ya que el ángulo sólido de observación es de 1,1 × 10-5 sr. ¿Podría ser contaminación radiactiva la radiación alfa observada? Los autores del estudio creen que no pues corresponde a las expectativas teóricas de los modelos numéricos de simulación. Aún así las pruebas son poco firmes y por ello el artículo se publica en Nature Communications en lugar de una revista más prestigiosa.
Puede parecer un éxito menor tras más de 20 años de investigación, pero la fusión aneutrónica protón-boro es mucho más complicada que la fusión deuterio-tritio. Los avances son lentos, pero lo más importante es que haya avances. Por ello, creo que esta noticia debe hacernos reflexionar sobre la importancia de financiar vías alternativas a la fusión más allá del ITER y del NIF.