El Departamento de Energía de EEUU ha
marcado una meta de potencia para las pilas de combustibles a cumplir en
2017, pero investigadores de la UNED ya lo han conseguido. El secreto
es un nuevo método de fabricación desarrollado y patentado por el equipo
español para uno de sus componentes. “En el área de las pilas de
combustible, el Departamento de Energía
de EEUU planteó unos objetivos que deberían alcanzarse entre 2017-2020, y
algunos de estos ya los hemos superado en nuestro laboratorio”, explica
Pedro Luis García Ybarra, investigador del departamento de Física
Matemática y de Fluidos de la UNED.
Su equipo ha desarrollado un método
de fabricación para uno de los componentes que permite a la pila superar
la meta de potencia marcada en EEUU.
Así, con una carga
ultra-baja de platino de 0,01 mg/cm2 en los electrodos, han alcanzado
una alto aprovechamiento de platino que permite generar 10 kW/g de este
metal, unas cifras que mejoran sensiblemente las previstas por el
departamento norteamericano (8 kW/g con una carga de platino diez veces
superior, de 0,125 mg/cm2).
Normalmente, las pilas de
combustible generan electricidad a partir de hidrógeno y aire. Este
proceso es limpio, ya que expulsan vapor de agua en lugar de producir CO2,
como los motores de combustión interna de gasolina y gasoil. Además, si
el hidrógeno se obtiene a partir de energías renovables (por hidrólisis
de agua, por ejemplo, con energía eólica o solar) la contaminación en
este ciclo energético se reduciría a niveles mínimos.
Para superar
el rendimiento marcado por las autoridades norteamericanas, los
científicos han optimizado un elemento de la pila polimérica denominado
'ensamblaje membrana-electrodos' (MEA). “Este componente es común a
todas las pilas de combustible poliméricas”, afirma José Luis Castillo,
investigador también del departamento de Física Matemática y de Fluidos
de la UNED.
Controlar las propiedades del material
El
resultado ha sido patentado por los investigadores como una metodología
para depositar capas delgadas y nanoestructuradas de electrocatalizador
sobre los electrodos, que se unen por simple contacto a ambos lados de
la membrana polimérica, constituyendo el MEA.
Gracias a la metodología utilizada para la deposición de la capa catalítica (electrospray)
se consigue aumentar considerablemente el rendimiento. “Hemos sido
capaces de controlar las propiedades morfológicas (porosidad y
rugosidad) del material generado por las partículas cuando se depositan,
aumentando sustancialmente la superficie activa”, asegura Castillo, y
añade: “Como el rendimiento depende de la superficie de las partículas
catalíticas expuesta al gas reactivo, y esta se ha hecho muy grande,
hemos alcanzado un elevado rendimiento”.
Otra de las ventajas del
procedimiento es su facilidad para ser escalado, es decir, que estos
componentes de las pilas pueden reproducirse a escala industrial a bajo
coste, evitando las dificultades registradas con otras metodologías.
El
coste del catalizador de platino supone más del 30 % del valor total de
una pila. De ahí que construir pilas de combustible a precios
competitivos sea uno de los retos perseguidos por la comunidad
investigadora. Con pilas baratas podría generalizarse su uso en
automoción, sustituyendo los motores de combustión interna por motores
eléctricos alimentados por una pila de combustible.
Adecuación a la demanda energética
Abaratando
costes, también podría explotarse otra de sus posibles aplicaciones:
dar solución al problema de la discontinuidad y la adecuación a la
demanda energética que presentan las energías renovables.
Actualmente,
los acumuladores eléctricos (baterías) solucionan el problema, pero las
pilas de combustible serían una medida más sencilla y económica.
“Una
de las ideas es utilizar el exceso de electricidad generado en las
horas valle de demanda para, mediante la hidrólisis del agua, producir
hidrógeno y almacenarlo. Así, cuando llegue una hora pico de demanda, se
conectaría la pila de combustible para conseguir una generación
adicional de electricidad”, detalla García Ybarra. “De esta forma, se
consigue estabilizar la producción de energía mediante fuentes
renovables”, añade el investigador.
Junto al reto de abaratar
componentes, los científicos tienen por delante conseguir que estos sean
duraderos. De momento, una de las pilas desarrolladas por los
investigadores ya lleva funcionando más de 1.000 horas de forma
ininterrumpida.
No hay comentarios:
Publicar un comentario